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Abstract  43 

Following the emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-44 

CoV-2) responsible for COVID-19 in December 2019 in Wuhan (China) and its spread to the 45 

rest of the world, the World Health Organization declared a global pandemic in March 2020. 46 

Without effective treatment in the initial pandemic phase, social distancing and mandatory 47 

quarantines were introduced as the only available preventative measure. Despite the 48 

socioeconomic impacts, air quality improved due to lower pollutant emissions. Here we 49 

investigate the effects of the COVID-19 lockdowns on ambient black carbon (BC), which 50 

affects climate and damages health, using in-situ observations from 17 European stations in a 51 

Bayesian inversion framework. BC emissions declined by 11% in Europe (20% in Italy, 32% 52 

in Germany, 20% in Spain) during lockdown compared to the same period in the previous five 53 

years.  BC temporal variation in the countries enduring the most drastic restrictions showed the 54 

most distinct lockdown impacts. Increased particle light absorption in at the beginning of the 55 

lockdown, confirmed by assimilated satellite and remote sensing data, suggests residential 56 

combustion was the dominant BC source. Accordingly, in Central and Eastern Europe, which 57 

experienced lower than average temperatures, BC was elevated compared to the previous five 58 

years. Except for the comparison of BC emissions in the lockdown with the previous five years, 59 

an immediate decrease was also seen, as compared with the period before the lockdown, which 60 

averaged about 10% over Europe. Such a decrease was not seen in the previous years, which 61 

also confirms an impact on BC emissions from COVID-19. 62 

 63 

  64 
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1 Introduction 65 

The identification of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 66 

or COVID-19) in December 2019 (WHO, 2020) in Wuhan (China) and its subsequent 67 

transmission to South Korea, Japan, and Europe (initially mainly Italy, France and Spain) and 68 

the rest of the world led the World Health Organization to declare a global pandemic by March 69 

2020 (Sohrabi et al., 2020). Although the symptoms are normally mild or not even detected for 70 

most of the population, people with underlying diseases or elderly are very vulnerable showing 71 

complications that can lead to death (Huang et al., 2020). Considering the lack of available 72 

treatment and vaccination to combat further spread of the virus, the only prevention measures 73 

included strict social, travel and working restrictions in a so-called lockdown period that lasted 74 

for several weeks (mid-March to end of April 2020 for most of Europe). The most drastic 75 

measures were taken in China, where the outbreak started, in Italy that faced large human losses 76 

and later in the United States. Despite all these restriction, still six months after the first 77 

lockdown, several countries are reporting severe human losses due to the virus (John Hopkins 78 

University of Medicine, 2020). 79 

Despite the dramatic health and socioeconomic consequences of COVID-19 lockdowns, 80 

their environmental impact might be beneficial. Bans on mass gatherings, mandatory school 81 

closures, and home confinement (He et al., 2020; Le Quéré et al., 2020) during lockdowns have 82 

all resulted in lower traffic-related pollutant emissions and improved air quality in Asia, Europe 83 

and America (Adams, 2020; Bauwens et al., 2020; Berman and Ebisu, 2020; Conticini et al., 84 

2020; Dantas et al., 2020; Dutheil et al., 2020; He et al., 2020; Kerimray et al., 2020; Le et al., 85 

2020; Lian et al., 2020; Otmani et al., 2020; Sicard et al., 2020; Zheng et al., 2020). The 86 

restrictions also present an opportunity to evaluate the cascading responses from the interaction 87 

of humans, ecosystems, and climate with the global economy (Diffenbaugh et al., 2020). 88 

Strongly light absorbing black carbon (BC, or ‘soot’), is produced from incomplete 89 

combustion of carbonaceous fuels e.g. fossil fuels, wood burning, biofuels (Bond et al., 2013). 90 

By absorbing solar radiation, it warms the air, reduces tropical cloudiness (Ackerman, 2000) 91 

and atmospheric visibility (Jinhuan and Liquan, 2000). BC causes pulmonary diseases (Wang 92 

et al., 2014a), may act as cloud condensation nuclei affecting cloud formation and precipitation 93 

(Wang et al., 2016) and contributes to global warming (Bond et al., 2013; Myhre et al., 2013; 94 

Wang et al., 2014a). When deposited on snow, it reduces snow albedo (Clarke and Noone, 95 

1985; Hegg et al., 2009) accelerating melting. Since BC is both climate relevant and strongly 96 
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linked to anthropogenic activity, it is important to determine the effects of the COVID-19 97 

lockdowns thereon. 98 

Here, we present a rigorous assessment of temporal and spatial changes BC emissions 99 

over Europe (including Middle East and parts of North Africa), combining in situ observations 100 

from the Aerosol, Clouds and Trace Gases Research Infrastructure (ACTRIS) network and 101 

state-of-the-art emission inventories within a Bayesian inversion. We validate our results with 102 

independent satellite data and compare them to inventories and baseline and optimized 103 

emissions calculated for previous years.  104 

2 Methods  105 

2.1 Particle light absorption measurements 106 

The measurement sites contributing data to this paper are regional background sites 107 

(except for one site in Germany) and all contribute to the research infrastructure Aerosol, 108 

Clouds and Trace Gases Research Infrastructure (ACTRIS), and the networks European 109 

Monitoring and Evaluation Program (EMEP) and Global Atmosphere Watch (GAW). The 110 

measurement data used for the period 2015 - May 2020 consist of hourly-averaged, quality-111 

checked, particle light absorption measurements.  The quality assurance and quality control 112 

correspond to the Level 2 requirements for ACTRIS, EMEP and GAW data, as described in 113 

detail in Laj et al. (2020). 114 

All absorption measurements within ACTRIS and EMEP are taken using a variety of 115 

filter-based photometers: Multi-Angle Absorption Photometers (MAAP), Particle Soot 116 

Absorption Photometers (PSAP) Continuous Light Absorption Photometers (CLAP), and the 117 

Aethalometer (AE31). Information on instrument type at the various sites are included in Table 118 

1 and procedures for harmonization of measurement protocols to produce comparable data seta 119 

are described in Laj et al. (2020) in detail. Zanatta et al. (2016) suggested that a MAC value of 120 

10 m2 g-1 (geometric standard deviation of 1.33) at a wavelength of 637 nm can be considered 121 

to be representative of the mixed boundary layer at European ACTRIS background sites, where 122 

BC is expected to be internally mixed to a large extent. Assuming an absorption Ångström 123 

exponent (AAE) is equal to unity, i.e. assuming no change in MAC for different sources (Zotter 124 

et al., 2017), we extrapolated the MACs at 637 nm (𝑀𝐴𝐶@"#) to the measurement wavelengths 125 

of our study (𝑀𝐴𝐶@"$) using the following equation:  126 
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following Lack and Langridge (2013). The resulting MAC values for each measurement 128 

station are shown in Table 1. 129 

2.2 Source – receptor matrix (SRM) calculations 130 

Source – receptor matrices (SRMs), also known as “footprint emission sensitivities” or 131 

“footprints” for each of the 17 receptor sites (Table 1) were calculated using the Lagrangian 132 

particle dispersion model FLEXPART version 10.4 (Pisso et al., 2019). The model releases 133 

computational particles that are tracked backward in time based on 3-hourly operational 134 

meteorological analyses from the European Centre for Medium-Range Weather Forecasts 135 

(ECMWF) with 137 vertical layers and a horizontal resolution of 1°×1°. The tracking of BC 136 

particles includes gravitational settling for spherical particles with an aerosol mean diameter of 137 

0.25 μm and a logarithmic standard deviation of 0.3 and a particle density of 1500 kg m−3 (Long 138 

et al., 2013). FLEXPART also simulates dry and wet deposition (Grythe et al., 2017), 139 

turbulence (Cassiani et al., 2014), unresolved mesoscale motions (Stohl et al., 2005) and 140 

includes a deep convection scheme (Forster et al., 2007). SRMs were calculated for 30 days 141 

backward in time, at temporal intervals that matched measurements at each receptor site. This 142 

backward tracking is sufficiently long to include almost all BC sources that contribute to surface 143 

concentrations at the receptors given a typical atmospheric lifetime of 3–11 days (Bond et al., 144 

2013). 145 

2.3 Bayesian inverse modelling  146 

The Bayesian inversion framework FLEXINVERT+ described in detail in Thompson 147 

and Stohl (2014) was used to optimize emissions of BC before (January to mid-March) and 148 

during the COVID-19 lockdown period in Europe (mid-March to end of April). The algorithm 149 

finds the optimal emissions, which lead to FLEXPART-modelled concentrations that better 150 

match the observations considering the uncertainties for observations, prior emissions and 151 

SRMs. The optimized (a posteriori) emissions are those that minimize the cost function: 152 

𝐉(𝒙) = 𝟏
𝟐
(𝒙 − 𝒙𝒃)𝑻𝐁4𝟏(𝒙 − 𝒙𝒃) +

𝟏
𝟐
(𝒚 − 𝐇𝒙)𝑻𝐑4𝟏(𝒚 − 𝐇𝒙)  (2) 153 

where 𝐇 is the Jacobian matrix of SRMs, 𝒚 the vector of observed BC concentrations, 𝒙 and 154 

𝒙𝒃  the vectors of optimized and prior emissions, respectively, while 𝐁 and 𝐑 are the error 155 

covariance matrices for the prior emissions and the observations, respectively. The most 156 

probable posterior emissions, 𝒙 are given by the following equation (Tarantola, 2005): 157 

𝒙 = 𝒙𝒃 + 𝐁𝐇𝐓(𝐇𝐁𝐇𝐓 +𝐑)4𝟏(𝒚 − 𝐇𝒙𝒃)  (3) 158 
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Here, posterior emissions were calculated weekly between 1 January and 30 April 2020. 159 

To show potential differences on the signal from the 2020 restrictions, we calculated the 160 

posterior emissions of BC for the same periods in the years 2015–2019. The aggregated 161 

inversion grid (25°N–75°N and 10°W–50°E) and the average SRM for inversions are shown in 162 

Figure 1, while the measurement stations are listed in Table 1. The variable grid uses high 163 

resolution at regions, where there are many stations and hence strong contribution from 164 

emissions, while it lowers resolution at regions that lack measurement stations following a 165 

method proposed by Stohl et al. (2010) 166 

Theoretically, the algorithm can calculate negative posterior emissions, which are 167 

physically unlikely. To tackle this problem, an inequality constraint was applied on the 168 

emissions following the method of Thacker (2007) that applies the constraint as “error-free” 169 

observations: 170 

𝒙5 = 𝒙 + 𝐀𝐏𝐓(𝐏𝐀𝐏𝐓)4𝟏(𝒄 − 𝐏𝒙)  (4) 171 

where 𝐀 is the posterior error covariance matrix, 𝐏 is a matrix operator to select the variables 172 

that violate the inequality constraint, and 𝒄 is a vector of the inequality constraint, which in this 173 

case is zero. 174 

We evaluated the assumptions made on the error covariance matrices for the prior 175 

emissions and the observations using the reduced 𝜒$ statistics (𝐁	and	𝐑). When 𝜒$ is equal to 176 

unity, the posterior solution is within the limits of the prescribed uncertainties. The latter is the 177 

value of the cost function at the optimum and is equivalent to the weighted sum of squares 178 

divided by the number of observations (Thompson et al., 2015). In the inversions performed 179 

here, the calculated 𝜒$ values were between 0.8 and 1.5 indicating that the chosen uncertainty 180 

parameters are close to the ideal ones. The number of measurements used in each inversion was 181 

equal to 12538 from 17 stations. To select the inversion that provides the most statistically 182 

significant result, an evaluation of the improvement in the posterior modelled concentrations, 183 

with respect to the prior ones, against the observations was performed (Figure 2). The resulting 184 

values of each of the statistical measures that were performed are given in detail in Table 2. 185 

Note that this is not a validation of the posterior emissions, because the comparison is only done 186 

for the observations that were included in the inversion (dependent observations), and the 187 

inversion algorithm has been designed to reduce the model–observation mismatches. This 188 

means that the reduction of the posterior concentration mismatches to the observations is 189 

determined by the weighting that is given to the observations with respect to the prior emissions. 190 

A proper validation of the posterior emissions is performed against observations that were not 191 

included in the inversion (independent observations) in Results section. 192 
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2.4 Prior emissions 193 

As a priori emissions in the inversions, the ECLIPSE version 5 and 6 (Evaluating the 194 

CLimate and Air Quality ImPacts of ShortlivEd Pollutants) (Klimont et al., 2017), EDGAR 195 

(Emissions Database for Global Atmospheric Research) version HTAP_v2.2 (Janssens-196 

Maenhout et al., 2015), ACCMIP (Emissions for Atmospheric Chemistry and Climate Model 197 

Intercomparison Project) version 5ref (Lamarque et al., 2013) and PKU (Peking University) 198 

(Wang et al., 2014b) were used (Figure 3). All inventories include the basic emission sectors 199 

(e.g., waste burning, industrial combustion and processing, all means of transportation (aerial, 200 

surface, ocean), energy conversion, residential and commercial combustion (see references 201 

therein). Biomass burning emissions were adopted from the Global Fire Emissions Database, 202 

Version 4.1s (GFEDv4.1s)(Giglio et al., 2013). 203 

2.5 MERRA-2 (Modern-Era Retrospective Analysis for Research and Applications 204 

Version 2)  205 

The MERRA-2 reanalysis dataset for BC (Randles et al., 2017) assimilates bias-corrected 206 

AOD from Moderate Resolution Imaging Spectroradiometer (MODIS), Advanced Very High 207 

Resolution Radiometer (AVHRR) instruments, Multiangle Imaging SpectroRadiometer 208 

(MISR) and Aerosol Robotic Network (AERONET) with the Goddard Earth Observing System 209 

Model Version 5 (GEOS-5). BC and other aerosols in MERRA-2 are simulated with the 210 

Goddard Chemistry, Aerosol, Radiation and Transport (GOCART) model and delivered in 211 

hourly to monthly temporal resolution and 0.5°×0.625° spatial. The product has been validated 212 

for AOD, PM and BC extensively (Buchard et al., 2017; Qin et al., 2019; Randles et al., 2017; 213 

Sun et al., 2019). Ångström exponent (AE), a measure of how the AOD changes relative to the 214 

various wavelength of light, is derived here from AOD469, AOD550, AOD670, and AOD865, 215 

by fitting the data to the linear transform of Ångström's empirical expression: 216 

𝜏" = 𝜏"!(
"
"!
)46  (5) 217 

where 𝜏" is the known AOD at wavelength 𝜆 (in nm), 𝜏"! is the AOD at 1000 nm, and α stands 218 

for AE (Gueymard and Yang, 2020).  219 

2.6 Absorption Ångström exponent from AErosol RObotic NETwork (AERONET) 220 

data 221 

Aerosol composition over Europe during the COVID-19 lockdown was confirmed using 222 

the AERONET data (Holben et al., 1998). AERONET provides globally distributed 223 
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observations of spectral aerosol optical depth (AOD), inversion products, and precipitable 224 

water in diverse aerosol regimes. The AE for a spectral dependence of 440-870 nm is related to 225 

the aerosol particle size. Values less than 1 suggest an optical dominance of coarse particles 226 

corresponding to dust, ash and sea spray aerosols, while values greater than one imply 227 

dominance of fine particles such as smoke and industrial pollution (Eck et al., 1999). We chose 228 

data from five stations covering Western, Central and Eastern Europe, for which cloud-free 229 

measurements exist for the lockdown period, namely Ben Salem (9.91°E, 35.55°N), Minsk 230 

(27.60°E, 53.92°N), Montsec (0.73°E, 42.05°N), MetObs Lindenberg (14.12°E, 52.21°N) and 231 

Munich University (11.57°E, 48.15°N). We used Level 1.5 absorption AE (AAE) 232 

measurements for the COVID-19 lockdown period (14 March to 30 April 2020). 233 

2.7 Statistical measures 234 

For the performance evaluation of the inversion results against dependent (observations 235 

that were included in the inversion) and independent observations (observations that were not 236 

included in the inversion), four different statistical quantities were used:  237 

(1) Pearson’s correlation coefficient: 238 

𝑅78 =
9∑ 7"8"

#
"$% 4∑ 7"	 ∑ 8"

#
"$%

#
"$%

;9∑ 7"
'#

"$% 4(∑ 7"
#
"$% )';9∑ 8"

'#
"$% 4(∑ 8"#

"$% )'
  (6) 239 

where 𝑛 is sample size, 𝑚 and 𝑜 the individual sample points for model concentrations and 240 

observations indexed with 𝑖.  241 

(2) The normalized root mean square error (nRMSE): 242 

𝑛𝑅𝑀𝑆𝐸 =
;∑ %

#
#
"$% (7"48")'

8"
()*48"

("#   (7) 243 

(3) The mean fractional bias 𝑀𝐹𝐵 was selected as a symmetric performance indicator that gives 244 

equal weights to under- or over-estimated concentrations (minimum to maximum values range 245 

from -200% to 200%) and is defined as: 246 

𝑀𝐹𝐵 = #
9
∑ (7"48")
#
"$%
∑ (

("+,"
' )#

"$%
  (8) 247 

(4) The mean absolute error was computed normalized (𝑛𝑀𝐴𝐸) over the average of all the 248 

actual values (observations here), which is a widely used simple measure of error: 249 

𝑛𝑀𝐴𝐸 = ∑ |7"48"|
#
"$%
∑ 8"#
"$%

  (9) 250 
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2.8 Region definitions 251 

All country and regional masks are publicly available. Regions used for statistical 252 

processing purposes were adopted from the United Nations Statistics Division 253 

(https://unstats.un.org/home/). Accordingly, Northern Europe includes UK, Norway, Denmark, 254 

Sweden, Finland, Iceland, Estonia, Latvia and Lithuania. Southern Europe includes Spain, Italy, 255 

Greece, Slovenia, Croatia, Bosnia, Serbia, Albania and North Macedonia. Western Europe is 256 

defined by France, Belgium, Holland, Germany, Austria and Switzerland. Eastern Europe 257 

includes Poland, Czechia, Slovakia, Hungary, Romania, Bulgaria, Moldova, Ukraine, Belarus 258 

and Russia. 259 

3 Results 260 

3.1 Optimized (posterior) emissions from Bayesian inversion  261 

We performed five inversions for BC over Europe for 1st January- 30th April 2020, each 262 

with different prior emissions from ECLIPSE version 5 and 6, EDGAR version HTAP_v2.2, 263 

ACCMIP version 5 and PKU (Figure 3). Total prior emissions of BC in Europe from the five 264 

emission inventories for the period of the inversion ranged between 192-377 kt. We evaluated 265 

the assumptions made on the error covariance matrices for the prior emissions and the 266 

observations using the reduced 𝜒$ statistic (𝐁 and 𝐑, see section 2.3). When 𝜒$ is equal to 267 

unity, the posterior solution is within the limits of the prescribed uncertainties. The performance 268 

of the inversions with the five different prior inventories was evaluated using four statistical 269 

parameters (see section 2.7). The best performance of the inversions was achieved using 270 

ECLIPSEv6 (Table 2 and Figure 2) with the smallest 𝑛𝑅𝑀𝑆𝐸  (0.073) value, the largest 271 

Pearson’s 𝑅$  (0.60), the closest to zero 𝑀𝐹𝐵  value (0.03) and the smallest 𝑛𝑀𝐴𝐸  (714). 272 

Therefore, all the results presented below correspond to this inversion. 273 

Emissions were calculated to be 191 kt in the inversion domain or approximately 20% 274 

smaller than those in ECLIPSEv6 (239 kt) (Figure 4). Note that the aforementioned numbers 275 

refer to the whole inversion domain (not only Europe) and the whole study period (January – 276 

April 2020). The largest posterior decreases were found in Eastern Europe, where emissions 277 

dropped from 35 to 29 kt. Western European emissions of BC declined by almost 11% (from 278 

45 to 40 kt), as those in Scandinavian countries (from 8.7 to 6.4 kt). Finally, in Southern Europe 279 

(Spain, Italy, Greece) the posterior emissions also decreased by 21% relative to the priors (from 280 

61 to 48 kt). The largest country decreases were seen in France (from 14 to 8.2 kt), Italy (from 281 
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8.0 to 5.9 kt), UK (from 4.4 to 3.1 kt) and Germany (from 4.5 to 4.1 kt). Surprisingly, BC 282 

emissions were slightly enhanced in Poland (from 21 to 23 kt), and Spain (from 6.3 to 7.5 kt) 283 

were slightly enhanced. Note that although posterior emissions may only imply error in the 284 

prior emissions, we demonstrate that the decrease was in fact due to the COVID-19 lockdowns 285 

in the next section (3.2). 286 

3.2 Comparison with previous years 287 

We also performed inversions for 2015–2019 for the same period as the 2020 lockdowns 288 

(January- April) using almost the same measurement stations and keeping the same settings. 289 

The difference in BC emissions during the lockdown in 2020 (14 March to 30 April) from the 290 

respective emissions during the same period in 2015–2019 (14 March to 30 April) are shown 291 

in Figure 5 (a, emission anomaly) together with the gross domestic product (GDP) (Kummu et 292 

al., 2020) (b) , and (c) temperature anomaly from ERA-5 (Copernicus Climate Change Service 293 

(C3S), 2020) for the same period as the emission anomaly. The difference in the 2020 emissions 294 

of BC during the lockdown from the respective emissions in the same period in each of the 295 

previous years (2015–2019) is illustrated in Supplementary Figure 1. 296 

Overall, BC emissions decreased by ⁓48 kt during the COVID-19 lockdown in the 297 

inversion domain. We record a significant decrease in BC emissions in Central Europe 298 

(Northern Italy, Austria, Germany, Spain and some Balkan countries) (Figure 5) compared to 299 

the same period during the last five years. On average, emissions declined from 44 to 39 kt over 300 

Europe. The decrease has the same characteristics when compared to each of previous years 301 

since 2015 (Supplementary Figure 1) based on measurements of BC at the same stations as 302 

those used for the 2020 inversion. The countries that showed drastic reductions in BC emissions 303 

were those that suffered from the pandemic dramatically, with many human losses, strict social 304 

distancing rules and consequently less transport. Specifically, emissions dropped by 20% in 305 

Italy (2.4 to 2.0 kt), 40% in Germany (2.2 to 1.3 kt), 23% in Spain (3.4 to 2.6 kt) and remained 306 

the same or were slightly enhanced in Poland (~7.0 kt), France (~2.2 kt) and Scandinavia (~1.2 307 

kt). Overall, BC emissions in Western Europe declined by 22% (6.2 to 4.8 kt), in Southern 308 

Europe by 36% (12 to 7.7 kt) and in Northern Europe by 26% (3.8 to 2.8 kt). BC emissions in 309 

Eastern Europe were slightly increased during the 2020 lockdown as compared to the same 310 

period in the last five years (22 to 24 kt). Note that these numbers correspond to BC emissions 311 

during the COVID-19 lockdown period only (mid-March – April 2020). 312 

Some localised areas of increased BC emissions exist in Southern France, Belgium, 313 

Northern Germany and Eastern Europe (Figure 5), which are observed relative to almost every 314 
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year since 2015 (Supplementary Figure 1). While some hotspots in France cannot be easily 315 

explained, increased emissions in Eastern European countries are likely due to increased 316 

residential combustion, as people had to stay home during the lockdown. The combination of 317 

the financial consequences of the COVID-19 lockdown with the relatively low GDP per capita 318 

in these countries and the fact that from mid-March to end of April 2020 surface temperatures 319 

in these countries were significantly lower than in previous years is suggestive of increased 320 

emissions due to residential combustion. This source is most important in Eastern Europe 321 

(Klimont et al., 2017). Although residential combustion can be performed for heating or 322 

cooking needs in poorer countries, it is also believed to provide a more natural type of warmth 323 

and a comfortable and relaxing environment. Hence, it should not be assumed as an emission 324 

source in countries with lower GDPs only, especially as people spent more time at home. 325 

Moreover, the prevailing average temperatures over Europe during the lockdown were below 326 

15°C (Supplementary Figure 2), a temperature used as a basis temperature below which 327 

residential combustion increases (Quayle and Diaz, 1980; Stohl et al., 2013). 328 

3.3 Uncertainty and validation of the posterior emissions 329 

One of the basic problems when dealing with inverse modelling is that changing model, 330 

observational, or prior uncertainties can have drastic impacts on posterior emissions. We 331 

addressed this issue by finding the optimal parameters, in order to have a reduced 𝜒$ statistic 332 

around unity (see section 2.3). However, there are two other sources of uncertainty that, 333 

although not linked with the inversion algorithm, could affect posterior emissions drastically. 334 

The first is the use of different prior emissions; to estimate this type of uncertainty, we 335 

performed five inversions using each of the prior emission datasets (ECLIPSEv6 and v5, 336 

EDGAR_HTAPv2.2, ACCMIPv5 and PKU). The uncertainty was calculated as the gridded 337 

standard deviation of the posterior emissions resulting from the five inversions. The second 338 

type of uncertainty concerns measurement of BC, which is defined as a function of five 339 

properties (Petzold et al., 2013). However, as of today, no single instrument exists that could 340 

measure all of these properties at the same time. Hence, BC is not a single particle conistuent, 341 

rather an operational definition depending on the measurement technique (Petzold et al., 2013). 342 

Here we use light absorption coefficients (Petzold et al., 2013) converted to equivalent BC 343 

(eBC) using the mass absorption cross section (MAC). The MAC is instrument specific and 344 

wavelength dependent. The site-specific MAC values used to convert the filter-based light 345 

absorption to eBC can be seen in Table 1. It has been reported that MAC values vary from 2 – 346 

3 m2 g-1 up to 20 m2 g-1 (Bond and Bergstrom, 2006). To estimate the uncertainty of the posterior 347 
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fluxes associated with the variable MAC, we performed a sensitivity study using MAC values 348 

of 5, 10 and 20 m2 g-1 in all stations, as well as variable MAC values for each stations (Table 349 

1). Since these values are lognormally distributed, the uncertainty is calculated as the geometric 350 

standard deviation. The impact of other sources of uncertainty, such as those referring to 351 

scavenging coefficients, particle size and density that are used in the model have been studied 352 

before (Evangeliou et al., 2018; Grythe et al., 2017). 353 

The posterior emissions are less sensitive to the use of different MACs than the use of 354 

different prior inventories (Figure 6). The relative uncertainty due to different use of MAC 355 

values was up to 20–30% in most of Europe and increases dramatically far from the 356 

observations. Accordingly, the emission uncertainty of BC from the use of different priors was 357 

estimated to be up to 40% in Europe and shows very similar characteristics (same hot-spot 358 

regions and larger values where measurements lack). Overall, the combined uncertainty of BC 359 

emissions was ⁓60% in Europe. 360 

Validation of top-down emissions obtained by inversion algorithms can be proper only if 361 

measurements that were not included in the inversion are to be used (independent observations). 362 

For this reason, we left out of the inversion observations from two stations (DE0054K and 363 

DE0066R, Table 1). Due to the higher measurement station density in Central Europe, we 364 

randomly selected two German stations, rather than from a country that is adjacent to regions 365 

that lack observations. 366 

The prior, optimized and measured concentrations are shown in Figure 7 together with 367 

MERRA-2 surface BC concentrations at the same stations. The average footprint emission 368 

sensitivities are also given for the period of the lockdown. At station DE0054K, prior emissions 369 

represent observations very well until the beginning of the lockdown and then fail (Figure 7). 370 

On the other hand, the posterior emissions represent the variant concentrations during the 371 

lockdown effectively and also manage to capture some concentration peaks, which is reflected 372 

by lower 𝑛𝑅𝑀𝑆𝐸 . Backward modelling showed that the enhanced concentrations originate 373 

from Northern Germany and the Netherlands, where posterior emissions were increased 374 

compared with the prior ones (Figure 4). A similar pattern was seen at station DE0066K, 375 

although this station showed concentrations up to 4 mg m-3 (Figure 7). Again, the optimized 376 

emissions managed to represent the peaks at the end of January 2020 and at the beginning of 377 

the lockdown, which is again reflected by a half 𝑛𝑅𝑀𝑆𝐸 values and 𝑀𝐹𝐵 close to zero as 378 

compared to the priors. The larger concentrations during the lockdown result from increased 379 

emissions over Eastern Germany, Poland and the Netherlands, as well as in oil industries in the 380 
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North Sea (Figure 4b). In all these regions the footprint emissions sensitivities corresponding 381 

to the two independent stations were the highest.  382 

4 Discussion 383 

The improved air quality that Europe experienced during the lockdown was also evident 384 

from the assimilated MERRA-2 satellite-based BC data. The latter are plotted in Supplementary 385 

Figure 3 (left axis), together with the posterior emissions calculated in the present study (right 386 

axis) between 2015–2020. Many of the ACTRIS stations reported increased light absorption in 387 

the beginning of the lockdown (e.g., Figure 7); MERRA-2 data show the same patterns in 388 

France, Italy, UK and in Spain, and in all of Europe, in general. This can be explained by 389 

residential combustion considering that the surface temperature during the lockdown was lower 390 

than in previous years (Figure 5). The latter was confirmed by MERRA-2 reanalysis Ångström 391 

Exponent (AE) parameter at 470–870 nm, which shows higher values over Central and Eastern 392 

Europe during the lockdown in 2020 than in the same period of the previous years (Figure 8a,b). 393 

Larger AE values confirm the presence of wood burning aerosols (Eck et al., 1999). The fact 394 

that during the COVID-19 lockdown, residential combustion was a significant aerosol source 395 

in Europe, as compared to the previous years, was also confirmed by real-time observations of 396 

absorption AE from the AERONET data in five selected stations over Europe (Figure 8c). 397 

Measured absorption AE was higher during mid-March to April 2020 than in the same period 398 

of the last five years. 399 

Emissions of BC calculated with Bayesian inversion for the lockdown period dropped 400 

substantially in most of the countries that suffered from further spread of the virus and, 401 

accordingly, from strict lockdown measures, as compared to the respective emissions in the 402 

beginning of 2020 (Supplementary Figure 3). Specifically, the decrease in France was as high 403 

as 40%, 11% in Italy, 32% in Germany, 15% in Spain and 25% in the UK. Emissions also 404 

declined in Scandinavia by 12%, although Sweden did not enforce a lockdown. Overall, a 405 

reduction in BC emissions of about 10% can be concluded for Europe as a whole due to the 406 

lockdown. Stronger decreases in Eastern Europe were likely partly compensated by increased 407 

residential combustion in resulting from the prevailing low temperatures. 408 

We report a decrease of 11% in BC emissions in Europe during the lockdown that resulted 409 

from the COVID-19 outbreak, as compared to the same period in all previous years since 2015, 410 

based on particle light absorption measurements. We highlight these changes in BC emissions 411 

as a result of COVID-19 restrictions by plotting the temporal variability of the BC emissions 412 
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in the 5 previous years (2015 – 2019) for France, Italy, Germany, Spain, Scandinavia and 413 

Europe (Figure 9). We record a decrease in emissions of BC in France, Italy, Germany and 414 

Scandinavia in mid-March to April 2020, opposite to what was estimated for all years between 415 

2015 and 2019, which is obviously due to COVID-19. The UK and Spain showed a similar 416 

decrease in mid-March to April emissions in all previous years (2015–2019). However, the 417 

estimated posterior BC emissions during the 2020 lockdown were significantly lower than those 418 

of the same period in any of the previous years. Overall, emissions declined by 20% in Italy, 419 

40% in Germany, 23% in Spain and remained the same in France and slightly enhanced in 420 

Scandinavia as compared to those of the last five years. 421 

5 Conclusions 422 

The impact of the COVID-19 lockdowns over Europe on the BC emissions, in response 423 

to the pandemic was assessed in the present manuscript. Particle light absorption measurements 424 

from 17 ACTRIS stations all around Europe were rapidly gathered and cleaned to produce a 425 

high-quality product. The latter was used in a well-established Bayesian inversion framework 426 

and BC emissions were optimised over Europe to better capture the observations. We calculate 427 

that the optimised (posterior) BC emissions declined from 44 to 39 kt (11%) during the 428 

lockdown over Europe, as compared to the same period in the previous five years (2015–2019). 429 

The largest reductions were calculated for countries that suffered from the pandemic 430 

dramatically, such as Italy (from 2.4 to 2.0 kt), Germany (from 2.2 to 1.3 kt), Spain (from 3.4 431 

to 2.6 kt). BC emissions in Western Europe during the 2020 lockdown were decreased from 6.2 432 

to 4.8 kt (22%), in Southern Europe from 12 to 7.7 kt (36%) and in Northern Europe from 3.8 433 

to 2.8 kt (26%) as compared to the same period in the last five years. BC emissions were slightly 434 

enhanced in Eastern Europe (from 22 to 24 kt) during the lockdown, due to increased residential 435 

combustion, as people had to stay home and temperatures at that time were the lowest of the 436 

last five years. The presence of wood burning aerosols during the lockdowns was confirmed by 437 

large MERRA-2 AE, as well as from absorption AE measurements from AERONET that were 438 

higher in the lockdowns than in the same period of the last five years. The impact of the 439 

European lockdowns on BC emissions was also confirmed by a 10% decrease of the posterior 440 

emissions over Europe in the beginning of the lockdown, as compared to the period before, 441 

opposite to what was calculated in the previous years, which is obviously due to COVID-19. 442 

This decrease was more pronounced in France (40%), Italy (11%), Germany (32%), Spain 443 

(15%), UK (25%) and in Scandinavian countries (12%). The full impact of the disastrous 444 

pandemic will likely take years to assess. Nevertheless, with COVID-19 cases once again 445 
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increasing in many countries, the information presented here are essential to understand the full 446 

health and climate impacts of lockdown measures. 447 
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TABLES & FIGURES 725 

 726 

Table 1. Observation sites from the ACTRIS platform used to perform the inversions 727 

(dependent observations) and to validate the posterior emissions (independent observations) 728 

(the altitude indicates the sampling height in meters above sea level). Multi-Angle Absorption 729 

Photometers (MAAP) were used at all sites, except El Arenosillo (ES0100R) where a 730 

Continuous Light Absorption Photometer (CLAP) was used, Birkenes (NO0002R), where a 731 

Particle Soot Absorption Photometer (PSAP) and Observatoire Perenne de l' Environnement 732 

(FR0022R) and Zeppelin (NO0042G) where Aethalometers (AW31) were used. 733 

Name Latitude Longitude Altitude Type Wavelength 
(nm) 

MAC@637 
(m2 g-1) 

Jungfraujoch 
(CH0001G) 46.55 7.99 3578 Dependent 637 10 

Hohenpeissenberg 
(DE0043G) 47.80 11.01 985 Dependent 660 9.65 

Melpitz 
(DE0044K) 51.53 12.93 86 Dependent 670 8.78 

Zugspitze-
Schneefernerhaus 
(DE0054R) 

47.42 10.98 2671 Independent 670 9.51 

Leipzig-
Eisenbahnstrasse 
(DE0066K) 

51.35 12.41 120 Independent 670 9.51 

Izaña (ES0018G) 28.41 -16.50 2373 Dependent 670 9.51 
Granada 
(ES0020U) 37.16 -3.61 680 Dependent 670 9.51 

Montsec 
(ES0022R) 42.05 0.73 1571 Dependent 670 9.51 

El Arenosillo 
(ES0100R) 37.10 -6.73 41 Dependent 652 13.64 

Montseny 
(ES1778R) 41.77 2.35 700 Dependent 670 8.48 

Pallas (FI0096G) 67.97 24.12 565 Dependent 637 10.00 
Observatoire 
Perenne de l' 
Environnement 
(FR0022R) 

48.56 5.51 392 Dependent 880 7.24 

Puy de Dôme 
(FR0030R) 45.77 2.96 1465 Dependent 670 9.51 

Ispra (IT0004R) 45.80 8.63 209 Dependent 880 6.96 
Mt Cimone 
(IT0009R) 44.18 10.70 2165 Dependent 670 9.51 

Birkenes II 
(NO0002R) 58.39 8.25 219 Dependent 660 7.59 

Zeppelin mountain 
(NO0042G) 78.91 11.89 474 Dependent 880 7.24 
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Table 2. Statistical measures (𝑹𝑴𝑺𝑬, Pearson’s 𝑹𝟐, 𝑴𝑭𝑩 and 𝒏𝑴𝑨𝑬) for each of the prior 735 

and posterior concentrations against dependent observations (observations that were used in the 736 

inversion algorithm) for BC (eBC). Note that the inversion using ECLIPSEv6 prior emission 737 

dataset gave the best agreement with the observations and therefore the results of this inversion 738 

are presented here. 739 

 𝒏𝑹𝑴𝑺𝑬 Pearson’s 𝑹𝟐 MFB nMAE 
Prior ECLIPSEv6 0.102 0.30 0.52 997 
Prior ECLIPSEv5 0.098 0.18 -0.04 996 
Prior EDGAR_HTAPv2.2 0.105 0.11 0.34 1017 
Prior ACCMIPv5 0.101 0.28 0.36 971 
Prior PKU 0.101 0.21 0.25 983 
Posterior ECLIPSEv6 0.073 0.60 0.03 714 
Posterior ECLIPSEv5 0.084 0.52 0.09 819 
Posterior EDGAR_HTAPv2.2 0.084 0.53 0.20 815 
Posterior ACCMIPv5 0.091 0.55 0.26 787 
Posterior PKU 0.082 0.55 0.24 795 

 740 
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	742 
Figure 1. Aggregated inversion grid used for the (a) 2015–2019 and (b) 2020 inversions, 743 

respectively. The dependent measurements that were used in the inversion were taken from 744 

stations highlighted in red. The two independent stations that were used for the validation are 745 

shown in blue. (c, d) Footprint emission sensitivity (i.e. SRM) averaged over all observations 746 

and time steps for each of the inversions. Red points denote the location of each measurement 747 

site.  748 
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 749 
Figure 2. Scatter plots of prior and posterior concentrations against dependent observations 750 

(observations that were included in the inversion framework) from ACTRIS from January to 751 

April 2020. Four statistical measures (𝒏𝑹𝑴𝑺𝑬, Pearson’s 𝑹𝟐, 𝑴𝑭𝑩 and 𝒏𝑴𝑨𝑬) were used to 752 

assess the performance of each inversion using five different prior emission inventories for BC 753 

(ECLIPSEv5, v6, ACCMIPv5, EDGAR_HTAPv2.2 and PKU). 754 

  755 
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 756 
Figure 3. Prior emissions of black carbon (BC) used in the inversions. BC emissions from 757 

anthropogenic sources were adopted from ECLIPSE version 5 and 6 (Evaluating the CLimate 758 

and Air Quality ImPacts of ShortlivEd Pollutants) (Klimont et al., 2017), EDGAR (Emissions 759 

Database for Global Atmospheric Research) version HTAP_v2.2 (Janssens-Maenhout et al., 760 

2015), ACCMIP (Emissions for Atmospheric Chemistry and Climate Model Intercomparison 761 

Project) version 5 (Lamarque et al., 2013) and PKU (Peking University) (Wang et al., 2014b). 762 

Biomass burning emissions of BC from Global Fire Emissions Database (GFED) version 4.1 763 

(Giglio et al., 2013) were added in each of the aforementioned inventories. 764 

 	765 
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	766 
Figure 4. (a) Prior emissions of BC from ECLIPSEv6, (b) optimized (posterior) BC emissions 767 

after processing the ACTRIS data into the inversion algorithm, and (c) difference between 768 

posterior and prior emissions. All the results correspond to the inversion yielding the best results 769 

(Table 2 and Figure 2). 770 
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 772 
Figure 5. (a) Difference in posterior BC emissions during the lockdown (14 March to 30 April 773 

2020) in Europe from the respective emissions during the same period in 2015 – 2019, (b) GDP 774 

from Kummu et al. (2020), and (c) temperature anomaly from ERA-5 (Copernicus Climate 775 

Change Service (C3S), 2020) for the same period as the emission anomaly. The base GDP value 776 

below which a low income can be assumed was set to 12 thousand US dollars. 777 
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 779 
Figure 6. (a) Uncertainty of BC emissions due to the use of variable MAC values to convert 780 

from aerosol absorption to eBC concentrations that are used by the inversion algorithm. (b) 781 

Uncertainty due to the use of five different prior emissions inventories for BC. (c) Combined 782 

uncertainty. 783 

  784 

https://doi.org/10.5194/acp-2020-1005
Preprint. Discussion started: 5 October 2020
c© Author(s) 2020. CC BY 4.0 License.



31	

 785 
Figure 7. Prior and posterior BC concentrations at DE0054K and DE0066R stations that were 786 

not included in the inversion are compared with observations. The validation is done by 787 

calculating the 𝒏𝑹𝑴𝑺𝑬𝒔  and 𝑴𝑭𝑩𝒔  for the prior and posterior concentrations. The 788 

uncertainty of the observations is also given together with the posterior uncertainties in the 789 

concentrations calculated from the use of different MAC and prior emissions. For comparison, 790 

we plot the concentrations from MERRA-2 at the same two stations. The vertical dashed lines 791 

denote the period of the lockdown in most of Europe. On the right, the average footprint 792 

emission sensitivities are given at each independent station for the period of the lockdown. 793 
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 795 
Figure 8. (a) Average total aerosol Ångström parameter (470-870 nm) over Europe (mid-796 

March to April) in the five previous years (2015–2019) and (b) in 2020 (lockdown). (c) 797 

AERONET Absorption AE in Ben Salem (9.91°E, 35.55°N), Minsk (27.60°E, 53.92°N), 798 

Montsec (0.73°E, 42.05°N), MetObs Lindenberg (14.12°E, 52.21°N) and Munich University 799 

(11.57°E, 48.15°N) during mid-March to April in all years since 2015. 800 
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 802 
Figure 9. Posterior BC emissions in the most highly affected European countries (France, Italy, 803 

Germany, Spain and UK), Scandinavia and Europe from the COVID-19 pandemic (2020). 804 

Posterior BC emissions for every year since 2015 are also plotted in the same temporal 805 

resolution to show changes in BC emissions characteristics during the 2020 COVID-19 806 

pandemic. The grey shaded area corresponds to the BC emission uncertainty, while the vertical 807 

yellow dashed lines correspond to the beginning and end of the 2020 lockdown.  808 
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